skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Obando, Alejandro Guillen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The production of ordered mesoporous carbons (OMCs) can be achieved by direct pyrolysis of self-assembled polymers. Typically, these systems require a majority phase capable of producing carbon, and a minority phase to form pores through a thermal decomposition step. While polyacrylonitrile (PAN)-based block copolymers (BCPs) have been broadly reported as OMC precursors, these materials have a relatively narrow processing window for developing ordered nanostructures and often require sophisticated chemistry for BCP synthesis, followed by long crosslinking times at high temperatures. Alternatively, olefinic thermoplastic elastomers (TPEs) can be convered to large-pore OMCs after two steps of sulfonation-induced crosslinking and carbonization. Building on this platform, this work focuses on the precursor design concept for the efficient synthesis of OMCs through employing low-cost and widely available polystyrene-block-polybutadiene-block-polystyrene (SBS), which contains unsaturated bonds along the polymer backbone. As a result, the presence of alkene groups greatly enhances the kinetics of sulfonation-induced crosslinking reaction, which can be completed within only 20 min at 150 °C, nearly an order of magnitude faster than a recently reported TPE system containing a fully saturated polymer backbone. The crosslinking reaction enables the production of OMCs with pore sizes (∼9.5 nm) larger than most conventional soft-templating systems, while also doping sulfur heteroatoms into the carbon framework of the final products. This work demonstrates efficient synthesis of OMCs from TPE precursors which have a great potential for scaled production, and the resulting products may have broad applications such as for drug delivery and energy storage. 
    more » « less